NEW POINTS ON THE GRAPH $\boldsymbol{y}^{x}=\boldsymbol{x}^{y}$

Using the basic form of De Moivre's theorem: if $z=r c i s \theta=(\cos \theta+i \sin \theta)$ then: $z^{n}=r^{n} \operatorname{cisn} \theta=r^{n}(\cos n \theta+i \sin n \theta)$, so if z is to be REAL then $\sin n \theta$ must be zero so $\boldsymbol{\theta}=\boldsymbol{n} \boldsymbol{\pi}$ (ie multiples of $\boldsymbol{\pi}$ rads or 180°)
Therefore if z is to be real then $z^{n}=r^{n}(\cos n \pi+i \sin n \pi)$
Then, considering two negative real numbers " a " and " b ", (N.B. the modulus is always positive so the modulus of " a " is " $-\boldsymbol{a}$ ") then we can write:

$$
\begin{aligned}
z^{n} & =r^{n} \\
& (\cos n \theta+i \sin n \theta) \\
\mathbb{V} & \downarrow \\
a^{b} & =(-a)^{b}(\cos b \pi+i \sin b \pi)=\left((-\boldsymbol{a})^{-b}\right)^{-1}(\cos b \pi+i \sin b \pi) \\
b^{a} & =(-b)^{a}(\cos a \pi+i \sin a \pi)=\left((-\boldsymbol{b})^{-a}\right)^{-1}(\cos a \pi+i \sin a \pi)
\end{aligned}
$$

Now we will look at the two parts of these expressions and analyse them individually:

$$
\begin{aligned}
& a^{b}=\left((-a)^{-b}\right)^{-1}(\cos b \pi+i \sin b \pi) \\
& b^{a}=\left((-b)^{-a}\right)^{-1}(\cos a \pi+i \sin a \pi)
\end{aligned}
$$

So, if the positive numbers $x=-a$ and $y=-b$ satisfy $x^{y}=y^{x}$, then the red parts of above equations show this result and must be equal to each other.
(ie The equation: $x^{y}=y^{x}$ becomes $(-a)^{-b}=(-b)^{-a}$)
The blue parts will be equal to each other if:
$\cos \boldsymbol{b} \pi=\cos \boldsymbol{a} \pi$ and $\sin \boldsymbol{b} \pi=\sin \boldsymbol{a} \pi$, which means $\boldsymbol{b} \boldsymbol{\pi}=\boldsymbol{a} \boldsymbol{\pi} \pm \mathbf{2} \boldsymbol{k} \boldsymbol{\pi}$ and therefore $\boldsymbol{b}=\boldsymbol{a} \pm 2 \boldsymbol{k}$. (where \boldsymbol{k} is any whole number)

Recall \boldsymbol{a} and \boldsymbol{b} are negative so multiplying that last equality by -1 we get $-\boldsymbol{b}=-\boldsymbol{a} \pm \mathbf{2 k}$ (remember " \boldsymbol{b} " and " $-\boldsymbol{a}$ " are positive numbers!)

So, if we can find pairs of positive numbers \boldsymbol{x} and \boldsymbol{y} which differ by $2 \boldsymbol{k}$ and which obey $\boldsymbol{x}^{y}=\boldsymbol{y}^{x}$, then their opposite negative numbers $-x$ and $-y$ will also satisfy the equation $(-x)^{(-y)}=(-y)^{(-x)}$.
The simplest example of this is when $\boldsymbol{x}=4$ and $\boldsymbol{y}=2$. These numbers differ by 2 and they satisfy $4^{2}=2^{4}$ so this means that the opposites $\boldsymbol{x}=-4$ and $\boldsymbol{y}=-2$ will also satisfy the equation: $x^{y}=y^{x}$ because $(-4)^{(-2)}=(-2)^{(-4)}$

To find such numbers, we let $\boldsymbol{y}=\boldsymbol{x}-\mathbf{2 k}$
and solve $\boldsymbol{x}^{\boldsymbol{x}-\mathbf{2 k}}=(\boldsymbol{x}-\mathbf{2 k})^{\boldsymbol{x}}$
for $k=1,2,3$ and so on.

Examples:

If $\mathbf{k}=1$, Equ. 1 becomes $x^{x-2}=(x-2)^{x}$, whose solution is $x=4$.
(Found by drawing the graphs $f(x)=x^{x-2}$ and $f(x)=(x-2)^{x}$ using the AUTOGRAPH program and finding the intersection point.)
This leads to $x=4$ and $y=x-2=2$. The positive solutions are $\mathbf{+ 4}$ and $+\mathbf{2}$ and therefore, $\mathbf{- 4}$ and $\mathbf{- 2}$ will also satisfy $\boldsymbol{x}^{\boldsymbol{y}}=\boldsymbol{y}^{\boldsymbol{x}}$
(In each case, the \boldsymbol{x} and \boldsymbol{y} values can be swapped to produce $x=-2, y=-4$)
(We already knew these solutions.)

Now, let's explore some new solutions using $y=x-2 k$:

If $\mathbf{k}=\mathbf{2}$ (so the \boldsymbol{x} and \boldsymbol{y} differ by 4) then Equ 1 becomes $x^{x-4}=(x-4)^{x}$ whose solution is $x=5.6647143$ (from Autograph)
This leads to $y=x-4=1.6647143$,
so $\boldsymbol{x}=-5.6647143$ and $\boldsymbol{y}=-1.6647143$ will be solutions too.
Testing: $(-5.6647143)^{-1.6647143}=0.0275738+0.048443 i$

$$
(-1.6647143)^{-5.6647143}=0.0275738+0.048443 i
$$

(Again we can say $\boldsymbol{x}=\mathbf{- 1 . 6 6 4 7 1 4 3}$ and $\boldsymbol{y}=\mathbf{- 5 . 6 6 4 7 1 4 3}$ are solutions)
If $\mathbf{k}=\mathbf{3}$ (so the \boldsymbol{x} and \boldsymbol{y} differ by 6) then Equ 1 becomes $x^{x-6}=(x-6)^{x}$, whose solution is $x=7.4941717$
This leads to $y=x-6=1.4941717$, so $\boldsymbol{x}=-\mathbf{7 . 4 9 4 1 7 1 7}$ and $\boldsymbol{y}=-1.4941717$ will be solutions too.
Testing: $(-7.4941717)^{-1.4941717}=-0.000903+0.049311 i$
$(-1.4941717)^{-7.4941717}=-0.000903+0.049311 i$
(Again $\boldsymbol{x}=-1.4941717$ and $\boldsymbol{y}=-7.4941717$ are solutions too.)
If $\mathbf{k}=\mathbf{4}$ (so the \boldsymbol{x} and \boldsymbol{y} differ by 8) then Equ 1 becomes $x^{x-8}=(x-8)^{x}$, whose solution is $x=9.3944668$
This leads to $y=x-8=1.3944668$, so $\boldsymbol{x}=-9.3944668$ and $\boldsymbol{y}=-1.3944668$ will be solutions too.
Testing: $(-9.3944668)^{-1.3944668}=-0.014319+0.041595 i$
$(-1.3944668)^{-9.3944668}=-0.014319+0.041595 i$
(Again $\boldsymbol{x}=-1.3944668$ and $\boldsymbol{y}=-9.3944668$ are solutions too.)
If $\mathbf{k}=5$ (so the \boldsymbol{x} and \boldsymbol{y} differ by 10) then Equ 1 becomes $x^{x-10}=(x-10)^{x}$, whose solution is $x=11.33$
This leads to $y=x-10=1.33$
so $x=-11.33$ and $y=-1.33$ will be solutions too.
Testing: $(-11.33)^{-1.33}=-0.020+0.0340 i$
$(-1.33)^{-11.33}=-0.020+0.0340 i$
(Again $\boldsymbol{x}=\mathbf{- 1 . 3 3}$ and $\boldsymbol{y}=\mathbf{- 1 1 . 3 3}$ are solutions too.)

We can continue this as far as we like, but the pattern is better seen graphically.

The intersection points () of the "hyperbola-like" curve in the $1^{\text {st }}$ quadrant, of positive x and y solutions of $x^{y}=y^{x}$, with the lines $y=x, y=x \pm 2, y=x \pm 4$, $y=x \pm 6$ etc., are reflected in the line $y=-x$ so that they re-appear in the $3^{\text {rd }}$ quadrant but with the negative versions of the coordinates.

We already knew the points $(-4,-2),(-2.718,-2.718)$ and $(-2,-4)$.
The solutions to $\boldsymbol{x}^{\boldsymbol{y}}=\boldsymbol{y}^{\boldsymbol{x}}$ previously known are all the points on the purple line $y=x$, all the points on the blue "hyperbola-like curve" and all the points denoted by red dots (\bullet)
The LIGHT BLUE points (©) are the new ones. ${ }^{\text {(Thanks to Marcelo Arruda from BRAZIL) }}$

